
Jetpack Navigation

● Single Activity App Architecture
● Navigation
● Back Stack
● Safe Args

Overview

● Use the best practice benefits of fragments
● Host all your fragments inside one Activity
● Treat your fragments as your base screens
● Keeps data localized and safe from Services and ContentProviders
● Easier to define things in the Manifest file
● & more!

Single Activity Approach

Single Activity Multiple Activity

Navigation

Navigation Component
Collection of libraries/tooling for creating navigational paths in an app
● Assumes one Activity per graph with many Fragment destinations

Navigation Graph
● A centralized XML

resource containing
navigation information
such as destinations
and paths

NavHost
● An empty container

that displays
destinations from the
Navigation Graph

NavController
● Manages app

navigation within a
NavHost by swapping
destination contents in
the NavHost

Navigation Graph Breakdown
Destination
● Different content areas in your app

Action
● Logical connections between your destinations that

represent paths that users can take

Benefits of the Navigation Component
● Handles backstack
● Centralizes and visualizes navigation
● Simplifies common navigation patterns
● Implementing and handling deep linking
● Providing standardized resources for animations and transitions

Navigation Component Supports
● Working with Activities and Fragments and can be

extended to custom views
● Passing arguments between screens with safe args

○ A Gradle plugin that provides type safety when navigating
and passing data between destinations

● ViewModel
○ Scopes a ViewModel to a navigation graph to share

UI-related data between the graph’s destinations

Adding Dependencies - Navigation Component
In build.gradle, under dependencies:

Navigation Graph
● Developer added resource located under

res/navigation
● XML file containing all of your navigation

destinations and actions
● Lists all the (Fragment/Activity) destinations

that can be navigated to
● Lists the associated actions to traverse

between them
● Optionally lists animations for entering or

exiting

10

Android Studio Navigation Editor

NavHost
A placeholder empty container for our destinations

NavController
Manages the navigation host’s UI navigation in a navigation host

● When specifying a destination path, the action is only named, not executed
● The NavController handles following the path & executing the action

Navigating between
Destinations

Review Creating a Fragment

● Extend Fragment class
● Override onCreateView()
● Inflate a layout for the Fragment that you have defined in XML

Specifying a Destination

● Fragment destinations are connected by the action tags in the navigation graph.
● Actions can be defined in XML directly or in the Navigation Editor by dragging from source

to destination.
● Autogenerated action IDs take the form of

action_<sourceFragment>_to_<destinationFragment> .

Destination Example

NavController Example

Navigation Back Stack

Activity Back Stack Review

Back stack

Activity 1

Activity 2

Back stack

Activity 1

Back stack

Activity 2

Activity 1

Activity 2

Activity 3

State 1 State 3State 2

Fragment Back Stack Review

Back stack

Activity 1

Activity 2

Fragment 1

Back stack

Activity 1

Activity 2

Fragment 1

Fragment 2

Back stack

Activity 1

Activity 2

Fragment 1

State 1 State 3State 2

Jetpack Navigation Back Stack
Common back stack interactions can be described in the Navigation Graph

popUpTo
● Pop destinations when navigating from one destination to another

popUpToInclusive
● Indicate whether the destination specified in app:popUpTo should also be removed from the back

stack or kept

Navigation Back Stack Example

Back stack
A
B

Back stack
A

Back stack

A
A

State 1 State 3State 2

C

popUpTo A Example

Back stack
A

B

Back stack Back stack
A

State 1 State 3State 2

C

popUpToInclusive Example

Safe Args

Passing Data using Safe Args
Using Safe Args:
● Ensures arguments have a valid type
● Lets you provide default values
● Generates a <SourceDestination>Directions class with methods for

every action in that destination
● Generates a class to set arguments for every named action
● Generates a <TargetDestination>Args class providing access to the

destination's arguments

Safe Args Setup
In the project build.gradle file:

In the app's or module's build.gradle file:

Supported argument types
Type Type Syntax

app:argType=<type>
Supports Default
Values

Supports Null
Values

Integer "integer" Yes No

Float "float" Yes No

Long "long" Yes No

Boolean "boolean" Yes ("true" or "false") No

String "string" Yes Yes

Array above type + "[]"
(for example, "string[]" "long[]")

Yes (only "@null") Yes

Enum Fully qualified name of the enum Yes No

Resource reference "reference" Yes No

Supported argument types: Custom classes

30

Type Type Syntax
app:argType=<type>

Supports Default
Values

Supports Null
Values

Serializable Fully qualified class name Yes (only "@null") Yes

Parcelable Fully qualified class name Yes (only "@null") Yes

Navigation with
Safe Args

Sending Data to a Fragment
1. Create arguments the destination fragment will expect.
2. Create action to link from source to destination.
3. Set the arguments in the action method on

<SourceDestination>Directions.
4. Navigate according to that action using the Navigation Controller.
5. Retrieve the arguments in the destination fragment.

Destination arguments

33

Create action from source to destination

Navigating with actions
Sending Arguments

Navigating with actions
Retrieving Arguments

