
Fragments

● Combination of XML and Kotlin Class
○ Different from an Activity which is a full

screen of UI

● Have own layouts, events, & lifecycle
○ Lifecycle is tied to host activity lifecycle

● Encapsulates views and logic
○ Can be added or removed at runtime

● Must be hosted inside Activities
○ Ie: a behavior/portion of UI in an activity

("microactivity")

What are fragments?

Why Fragments?
● Handle different device form factors

○ Different devices have different amounts
of screen real-estate

○ What is the best way to utilize extra space
on a tablet?

● Reusable Views and Logic
● Passing data between screens
● Organized User Interface
● Jetpack Navigation (future topic)
● Screen Orientation

Why Fragments?
● Handle different device form factors
● Reusable Views and Logic
● Passing data between screens
● Organized User Interface
● Jetpack Navigation (future topic)
● Screen Orientation

Why Fragments?
● Handle different device form factors
● Reusable Views and Logic
● Passing data between screens

○ Activities need to use intents and make
sure objects are made parcelable to pass
data

○ Have access to data within encapsulating
Activity by reference

● Organized User Interface
● Jetpack Navigation (future topic)
● Screen Orientation

Activity 1 Activity 2

data Copy of
data

Why Fragments?
● Handle different device form factors
● Reusable Views and Logic
● Passing data between screens

○ Activities need to use intents and make
sure objects are made parcelable to pass
data

○ Have access to data within encapsulating
Activity by reference

● Organized User Interface
● Jetpack Navigation (future topic)
● Screen Orientation

Fragment 1 Fragment 2

Activity

data

Why Fragments?
● Handle different device form factors
● Reusable Views and Logic
● Passing data between screens
● Organized User Interface

○ Makes it easier to understand the flow
between different logical sections without
replacing everything on the screen

○ Update UI for device rotation
● Jetpack Navigation (future topic)
● Screen Orientation

Fragments

fragment

Activity

Why Fragments?
● Handle different device form factors
● Reusable Views and Logic
● Passing data between screens
● Organized User Interface
● Jetpack Navigation (future topic)

○ Simplify and standardize switching what
the user sees on the screen and handles
data passing

○ Built with fragment in mind
● Screen Orientation

Why Fragments?
● Handle different device form factors
● Reusable Views and Logic
● Passing data between screens
● Organized User Interface
● Jetpack Navigation (future topic)
● Screen Orientation

Fragments vs Activities

● A Fragment is like a
mini-Activity within an Activity
○ Manages its own lifecycle
○ Receives its own input

events

● Can be added or removed
while parent Activity is
running

● Multiple fragments can be
combined in a single Activity

● Can be reused in more than
one Activity

When to use Fragments

Organizing Activities and Fragments
Activities are navigation controllers primarily
responsible for:

● Navigation to other activities through
intents.

● Presenting navigational components such
as the navigation drawer or the
viewpager.

● Hiding and showing relevant fragments
using the fragment manager.

● Receiving data from intents and passing
data between fragments.

Fragments are content controllers and contain
most views, layouts, and event logic including:

● Layouts and views displaying relevant app
content.

● Event handling logic associated with
relevant views.

● View state management logic such as
visibility or error handling.

● Triggering of network request through a
client object.

● Retrieval and storage of data from
persistence through model objects.

Back Stack
& Lifecycle

First destination in the back stack

16

First
fragment

Back stack

FirstFragment

Add a destination to the back stack

17

Second
fragment SecondFragment

Back stack

FirstFragment

Tap Back button

18

First
fragment

SecondFragment

popped off the stack

Back stack

FirstFragment

Another back stack example

19

Result
fragment

WelcomeFragment

Question1Fragment

Question2Fragment

Question3Fragment

ResultFragment

Back stack

Modify Back button behavior

20

Welcome
fragment

WelcomeFragment

Question1Fragment

Question2Fragment

Question3Fragment

ResultFragment

Back stack

pop additional destinations
off the back stack

Fragment Lifecycle
● LifeCycle methods are

inherited from a superclass
● Always call up to the

superclass when
implementing fragment
lifecycle methods

CREATED

STARTED

RESUMED

PAUSED

STOPPED

DESTROYED

Fragment is running

Notable Fragment Lifecycle Methods
onAttach()

● Called when a fragment is attached
to a context

● Immediately precedes onCreate()

onCreateView()
● Called to create the view hierarchy associated

with the fragment
● Inflate the fragment layout here and return the

root view

onDestroyView() & onDetach()
● onDestroyView() is called when view hierarchy

of fragment is removed.
● onDetach() is called when fragment is no longer

attached to the host.

onViewCreated()
● Called when view hierarchy has

already been created
● Perform any remaining initialization

here (for example, restore state from
Bundle)

What do all the lifecycle methods do?
● onAttach() is called when a fragment is connected to an activity.
● onCreate() is called to do initial creation of the fragment.
● onCreateView() is called by Android once the Fragment should inflate a view.
● onViewCreated() is called after onCreateView() and ensures that the fragment's root view is

non-null. Any view setup should happen here. E.g., view lookups, attaching listeners.
● onActivityCreated() is called when host activity has completed its onCreate() method.
● onStart() is called once the fragment is ready to be displayed on screen.
● onResume() - Allocate “expensive” resources such as registering for location, sensor updates, etc.
● onPause() - Release “expensive” resources. Commit any changes
● onDestroyView() is called when fragment's view is being destroyed, but the fragment is still kept

around.
● onDestroy() is called when fragment is no longer in use.
● onDetach() is called when fragment is no longer connected to the activity.

Summary of fragment states

25

State Callbacks Description

Initialized onAttach() Fragment is attached to host.

Created onCreate(), onCreateView(),
onViewCreated()

Fragment is created and layout is being
initialized.

Started onStart() Fragment is started and visible.

Resumed onResume() Fragment has input focus.

Paused onPause() Fragment no longer has input focus.

Stopped onStop() Fragment is not visible.

Destroyed onDestroyView(), onDestroy(),
onDetach()

Fragment is removed from host.

Subclasses of Fragments
● List Fragment

○ A type of fragment specializing in working with a list view. It has a default
layout that contains the list view.

● DialogFragment
○ DialogFragment is a specialized Fragment used when you want to

display an overlay modal window within an activity that floats on top of
the rest of the content.

● PreferenceFragmentCompat
○ Displays a hierarchy of Preference objects as a list. This is used to create

a settings screen for your application.
● And More!

Managing
Fragments

Fragment Coding Guidelines
Use the AndroidX version of the Fragment class.
(androidx.fragment.app.Fragment).

Don't use the platform version of the Fragment class
(android.app.Fragment), which was deprecated.

Defining a Fragment Layout

Define Fragment Class

Connecting Fragments inside Activities
Statically
● Place the exact fragment you

want in the exact spot inside an
Activity

● This can simply be done with
xml only

Dynamically
● Use a FragmentManager to add,

remove, and replace fragments
within an activities layout at
runtime

● This needs to be done in the
activity logic

WARNING You cannot replace a fragment defined statically in the layout file via a
FragmentTransaction. You can only replace fragments that you added dynamically

Adding Fragments Statically

Fragment Manager
● Unlike Activities, fragments largely need

to be managed by the developer
● FragmentManager class (eventually

replaced by NavController + NavGraph)

Fragment Transaction
● Perform actions (add, remove, replace) on

fragments in response to user interaction
inside an activity

● Each change you commit to an activity is
called a transaction

● Transactions are committed using the
FragmentTransaction API

Managing Fragments
Tools to Manage Fragments

● findFragmentById()
○ Get existing fragments in Activity

● popBackStack()
○ Pop fragment off Fragment

backstack
● Add listener to backstack changes

○ addOnBackStackChangedListener()
● Open fragment transactions for adding

and removing fragments

Adding Fragments Dynamically

