
Activity Lifecycle

Overview
● Activity & Backstack
● Navigation
● Logging

Activity (Recap)
● An activity is a single focused thing your user can do. If you chain multiple

activities together to do something more complex, it’s called a task.
● Activities are arranged in a stack (LIFO)
● Activity class creates a window for its UI
● Has a life cycle

Examples
● Getting Directions
● User Interactions, such as button clicks,

can start other activities in the same or
other apps

Back Stack (Activity Stack)
● Android keeps track of Activities that have been visited using a stack (starting

from the launcher) (Last-In-First-Out (LIFO) stack)
● When a new Activity is started, the previous Activity is stopped and pushed

on the Activity back stack
● When the current Activity ends, or the user presses the Back button, it is

popped from the stack and the previous Activity resumes
● Later we will learn that the Back Stack is not limited to Activities it includes

Fragments and other transactions

Back stack of activities

6

Back stack

EmailActivity

Add to the back stack

7

Back stack

EmailActivity

ComposeActivity

Add to the back stack again

8

Back stack

EmailActivity

ComposeActivity

AttachFileActivity

Tap Back button

9

Back stack

EmailActivity

ComposeActivity

AttachFileActivity

popped off the stack

Tap Back button again

10

Back stack

EmailActivity

ComposeActivity

popped off the stack

Back Stack Example

MainActivity
What do you want to do?

FoodListActivity
Choose food items

CartActivity
View shopping cart

MainActivity
What do you want to do?

FoodListActivity
Choose food items

CartActivity

View shopping cart

MainActivity
What do you want to do?

FoodListActivity
Choose food items

CartActivity
View shopping cart

OrderActivity
Place order

MainActivity
What do you want to do?

FoodListActivity

Choose food items

CartActivity

View shopping cart

OrderActiv
ity

Place
 order

After viewing shopping
cart, user decides to add
more items, then places
order.

Navigation

Two Forms of Navigation
Temporal or back navigation

● provided by the device's Back button
● controlled by the Android system's

back stack

Ancestral or up navigation

● provided by the Up button in app's
action bar

● controlled by defining parent-child
relationships between activities in
the Android manifest

Task
● Collection of activities visited in sequence starting from launch
● All Tasks have their own back stack
● You can switch between stacks, activating the task’s back stack

Task 2

Task 1

Lifecycle and Back Stack
● All Activities have their own lifecycle
● The State of Activities changes depending on what is happening on the Back

Stack

Why Activity Lifecycle?
The activity lifecycle is important in avoiding memory leaks and app crashes while
maintaining data on the device

Data should be preserved when:
● Temporarily leaving an app before returning to it
● Getting interrupted by another app
● Rotating the device

Activity launched

onCreate()

App is running

Activity shut
down

Example of a simplified
activity lifecycle

Activity States
● All Activities cycle through different states of a lifecycle
● Activity State

○ Created, started, resumed, paused, stopped, destroyed

Activity Methods
 | onCreate(Bundle savedInstanceState)—static initialization

 | onStart()—when Activity (screen) is becoming visible

 | onRestart()—called if Activity was stopped (calls onStart())

 | onResume()—start to interact with user

 | onPause()—about to resume PREVIOUS Activity

 | onStop()—no longer visible, but still exists and all state info preserved

 | onDestroy()—final call before Android system destroys Activity

Activity Lifecycle
Deep Dive

onCreate()
This is fired when the system first creates the activity & other initialization work

● Performs basic application startup logic that should happen only once for the
entire life of the activity

○ Ie: Implementation of onCreate() might bind data to lists, associate the activity with a ViewModel,
and instantiate some class-scope variables

● If you have a lifecycle-aware component that is hooked up to the lifecycle of
your activity it will receive the ON_CREATE event.

● Inflates activity UI and performs other app startup logic

Makes the activity visible to the user, as the app prepares for the activity to enter
the foreground and become interactive.

● The onStart() method completes very quickly and, as with the Created state,
the activity does not stay resident in the Started state.

○ Once this callback finishes, the activity enters the Resumed state, and the system invokes the
onResume() method.

● Called after activity:
○ onRestart() if activity was previously stopped or onCreate()

onStart()

onResume()
Where the user can interact with the app when the activity gains input focus.

● When the activity moves to the resumed state, any lifecycle-aware
component tied to the activity's lifecycle will receive the ON_RESUME event.

● When an interruptive event occurs, the activity enters the Paused state, and
the system invokes the onPause() callback.

● If the activity returns to the Resumed state from the Paused state, the system
once again calls onResume() method.

○ Activity stays in resumed state until system triggers activity to be paused

onPause()
The system calls this method as the first indication that the user is leaving your
activity (though it does not always mean the activity is being destroyed)

● Use the onPause() method to pause or adjust operations that should not
continue (or should continue in moderation).

○ Only while the Activity is in the Paused state, and that you expect it to resume shortly.
● When the activity moves to the paused state, any lifecycle-aware component

tied to the activity's lifecycle will receive the ON_PAUSE event.
○ Activity is still visible, but user is not actively interacting with it
○ Activity has lost focus (not in foreground)

● Counterpart to onResume()

onStop()
When the activity is no longer visible to the user.

● This may occur when a newly launched activity covers the entire screen.
○ Resources no longer needed are released.

● When the activity moves to the stopped state, any lifecycle-aware
component tied to the activity's lifecycle will receive the ON_STOP event.

○ Saves any persistent state the user in the process of working with to save work.
● You should also use onStop() to perform relatively CPU-intensive shutdown

operations.

onDestroy()
The activity is about to be destroyed.

● The system invokes this callback either because:
○ The activity is finished or dismissed
○ The system temporarily destroys activity via configuration change (ie: device rotation or

multi-window mode)
● Any lifecycle-aware component tied to the activity's lifecycle will receive the

ON_DESTROY event and is not reliable for saving user data (do ahead of time)
● Performs the final cleanup of resources

Activity States Summary
 State Callbacks Description

Created onCreate() Activity is being initialized.

Started onStart() Activity is visible to the user.

Resumed onResume() Activity has input focus.

Paused onPause() Activity does not have input focus.

Stopped onStop() Activity is no longer visible.

Destroyed onDestroy() Activity is destroyed.

Saving and Storing States

Configuration Changes
● A change to any of the following options results in the activity being

destroyed and then recreated:
○ Options specified by the user (such as the locale)
○ Options relating to the physical device (such as the orientation and screen size)
○ Entering multi-window mode (from Android 7)

onDestroy()

onPause()

onStop()

onCreate()

onResume()

onStart()

Destroy Activity Rebuild Activity

Activity Instance State
● When an Activity is running, it creates state information, ie:

○ Counter
○ User Text
○ Animation Progression

● The State is Lost when:
○ Device is rotated
○ Language changes
○ Back-button is pressed
○ System clears memory

What Should the Programmer save
● System takes care of saving:

○ State of views with unique ID (android:id) such as text entered into EditText
○ Intent that started activity and data in its extras

● As the programmer, you need to save all other data
○ Activity Progress
○ User Progress
○ Settings
○ Etc

How to save States
Activity is destroyed and restarted, or app is terminated and activity is started.

● Implementing onSaveInstanceState(Bundle outState) in your Activity
○ Called by Android runtime when there is a possibility the Activity may be destroyed
○ Saves data only for this instance of the Activity during current session
○ Stores user data needed to reconstruct app and activity Lifecycle changes
○ onCreate() receives the Bundle as an argument when activity is created again.

● Data should be saved in Bundles
○ Use Bundle provided by onSaveInstanceState().

How to Retrieve States
● Data is retrieved from saved Bundles

● Two Common Place to Retrieve data
○ onCreate() callback (prefered method b/c it ensures UI is up and running

ASAP)
○ Implementing onRestoreInstanceState(Bundle mySavedState)

■ Called after onStart()

● Only onCreate() has a Bundle Parameter for retrieving saved data, no other
lifecycle methods are capable of doing so

● When you stop and restart a new app session, the Activity instance states
are lost, with the activities reverting to their defaults

● Use shared preferences or a database to save user data between app
sessions

Instance States and Restarting Apps

Logging

Logging in Android

● Monitor the flow of events or state of your app.

● Use the built-in Log class or third-party library.

● Example Log method call: Log.d(TAG, "Message")

41

Write logs

42

Priority level Log method

Verbose Log.v(String, String)

Debug Log.d(String, String)

Info Log.i(String, String)

Warning Log.w(String, String)

Error Log.e(String, String)

