
User Interface

Overview
● UI Fundamentals
● Resources & IDs
● Constraint Layout
● RecyclerView

UI Fundamentals

Activities and Layouts
Every Android app is a collection of
screens, and each screen is comprised
of an activity and a layout.

Activities: Tell Android how the app
should interact with the user

Layouts: Align views based on the
rules of the layout manager.

Layout Editor

1 2 3

Layouts
● Layouts are xml files that define

how an activity looks
○ Views and Viewgroups

● Connect app to layout files when
each screen is created

● Simple UI is done in XML and
advanced in Kotlin (ie: Games)

XML

● Every UI element is a View
● Basic building block for all UI components

○ Base class for interactive UI components
● Placed in layout resource files (xml)
● Predefined View Subclasses:

○ TextView display text
○ EditText enables the user to enter and edit text
○ Clickable elements provide interactive behavior

■ Ex: Button, RadioButton, CheckBox, Spinner
○ And more!

● Sometimes called a widget (don’t get confused)
● Usually physically located under the app bar

Views
Views

ViewGroup
● Special type of View that is used as a container to hold other Views and

ViewGroups
● Commonly used ViewGroups

○ ConstraintLayout: a container that connects children Views using constraints
○ ScrollView: has one View child and enables scrolling on it
○ RecyclerView: Scrollable container for displaying views in a list

● Contain child views and can be in a row, column, grid, table, or absolute

Views and ViewGroups Hierarchy

ViewGroup

ViewGroup View View

View View View

Root view is always a

View Hierarchy Example

View and ViewGroup xml Structures

ViewGroup xml View xml

Layout Example

Example: Comparing ViewGroups

LinearLayout ConstraintLayout

Attributes
● Attributes give you control over Views in a layout
● Must be specified for all views

○
○

Sizing
Common values you may see:

● match_parent - make the layout as big as its
parent (minus any padding)

● wrap-content - make layout big enough to hold all
of the views inside it’

● Specific values such as 10dp
(density-independent pixels)

View Box Model
● Content - size of the view itself
● Padding - artificial increase to view

size outside of content
● Border - outside padding, a line

around edge of view
● Margin - invisible separation from

neighboring views

View with margin View with margin and padding

View ViewView

Box Model Example

Margin
Border
Padding
Content

View Rendering Cycle

Draw!

Layout

Measure

Resources & IDs

Resources Overview
What are Resources

● Anything from colors, images, layouts, menus, and string values
● Everything defined in resource files can be referenced within your

application's code (flexible code)
● Resource files are stored in \res
● Useful for localization

Common Types of Resources
● drawable: images and icons
● layout: layout resource files for UI
● mipmap: pre-calculated, optimized collections of app icons used

by the Launcher
● values: colors, dimensions, strings, and styles (themes)
● menu: menu items

● View IDs give you the ability to reference views in the view hierarchy
● Can grab and update data/attributes of a view after connecting

Importance of View IDs

…
…
…

…

MainActivity.kt activity_main.xml

What is R.java
● A special class that enables you

to retrieve references to app
resources

● Created when you build the app
Purpose

● @+id tells android to include the
id of your view as a resource in
the resource file R.java

● This makes it possible to access
views inside an activity

View Resources

Using R.java
R.id can be used to connect to
views by their id, the id’s are stored
in R.java
● Can access views using

R.id.<resource_name>

R.string can be used to get text

R.layout can be used to get the
layouts

String Resources

Layout Resources

Resources Overview

resources and resource files
stored in res folder

● Layout:

● View:

● String:
In Kotlin:
In XML:

Data Binding
Data Binding can bind UI components in layouts to data sources in app
● Helps reduce potential for crashes & reduces amount of code
● An alternative to findViewById()
● Find incorrect layout ID associations at compile time

activity_main.xmlMainActivity.kt

…
…
…

…

initialize binding

ConstraintLayout

Another Look at LinearLayout
● Only Displays Vertical or Horizontal
● Useful but not very versatile

Cost of Nested Layouts

● Deeply nested ViewGroups require more computation.

● views may be measured multiple times.

● Can cause UI slowdown and lack of responsiveness

Use ConstraintLayout to avoid some of these issues!

Benefits of Constraint Layout

● Recommended default layout for Android

● Solves costly issue of too many nested layouts, while
allowing complex behavior

● Position and size views within it using a set of constraints

Core Layouts - Constraint Layout
Constraint Layout: Allows complex layout behavior while mitigating problem of
having too many nested layout

● Default Android layout
● Uses constraints to create views for position and size
● Focuses positions of items respective to one another

○ B always constrained to the right of A
○ C always constrained to the bottom of A

Parents and Positioning - Constraint Layout
Constraints can be set up relative to parent containers in the following general form:
● SourceConstraint TargetConstraint

Where on a TextView the following attributes could be observed as:
● Top Top parent
● Left Left parent

Relative Positioning - Constraint Layout

Hello!

Top

Bottom
 Baseline

Start

Left Right

End

Hello!

Vertical Direction
● Can add a constraint to the

top or bottom of an element
● Or to the text’s baseline if the

View contains text

Horizontal Direction
● Can constrain the start and end

edges of a View
● Start = Left
● End = Right

Example (Code vs Drag & Drop) - Constraint Layout

Code XML elements Drag & Drop XML elementsOR

Layout Editor - Constraint Widget
There are three constraints & symbols for each type:

Fixed:

Wrap Content:

Match Constraints:

Chains - Constraint Layout
A chain is a group of views that are bi-directionally linked to each other with
position constraints.
● Can position views in relation with one another
● Can be linked horizontally or vertically

Chain creation is accomplished in the Layout Editor by:
1. Selecting the objects you want to be in the chain.

2. Right-clicking and select Chains.

3. Creating a horizontal or vertical chain.

Chain Styles - Constraint Layout
There are multiple types of chains for adjusting space between views:

Spread Chain

Spread Inside Chain

Weighted Chain

Packed Chain

Guidelines (Advanced) - Constraint Layout
Guidelines are only used for layout purposes and allows positioning of multiple
views in relation to a single guide

● Can be vertical or horizontal
● Are not displayed on the device
● Enables collaboration between UI/UX teams

Guidelines can be created via:
● layout_constraintGuide_begin
● layout_constraintGuide_end
● layout_constraintGuide_percent

○ Between 0 and 1

Example Guideline in Android Studio

Real World Example - Constraint Layout

RecyclerView

Displaying Lists of information
● It is inevitable that as a developer you will need to display information and

views in a list
● What methods can be used to achieve making a list

○ ✘ LinearLayout inside a ScrollView
○ ✘ ListView
○ ✔ RecyclerView

ListView
Displays a vertically-scrollable collection of views, where each view is positioned
immediately below the previous view in the list.

So why is this not a good option?

Problem with ListView
● Renders every list item’s view in the ListView at all times
● Has a huge cost on performance for larger lists with more complex views
● Only has a LayoutManager that supports a vertical ListView
● Solution: RecyclerView

RecyclerView
● Contains a fixed number of views
● Reuses views that are no longer visible

RecyclerView components
● Data contains the item
● RecyclerView scrolling list for list items—RecyclerView
● Layout for one item of data—XML file
● Layout manager handles the organization of UI components in a

View—Recyclerview.LayoutManager
● Adapter connects data to the RecyclerView—RecyclerView.Adapter
● ViewHolder has view information for displaying one

item—RecyclerView.ViewHolder

Putting the components together

Layout Manager
● Measures and positions item views
● Handles recycling unused views
● Common Layout Managers:

○ LinearLayoutManager
○ GridLayoutManager
○ StaggeredGridLayoutManager

Helps incompatible interfaces work together
● Takes data from a database and prepares data to put into a View
● Intermediary between the Data and View
● Manages creating, updating, adding, deleting View items as underlying data

changes

Adapter

Used by the adapter to prepare one View with data for one list item

● Describes an item view and metadata about its place inside a RecyclerView
● Specified with a layout file
● Is placed by the layout manager

ViewHolder

1. RecyclerView dependency

2. Add RecyclerView to layout

3. Create list item layout

4. Create the list adapter
4.1. Create ViewHolder

4.2. Define onCreateViewHolder()

4.3. Define onBindViewHolder()

4.4. Define getItemCount()

5. Create the RecyclerView in Activity onCreate()

Putting to Practice

1 - Add Recycler dependency

2 - Add RecyclerView to XML Layout

3 - Create list item layout (for 1 item)

4.0 - Create the list adapter

4.1 - Create the viewholder in adapter class

4.2 - onCreateViewHolder()

4.3 - onBindViewHolder()

4.4 - getItemCount()

5 - Create the RecyclerView in Activity onCreate()

Final Result

