
Android Architecture &
Fundamentals

Overview

● Android OS Background
● Android Architecture
● Core Fundamentals
● Kotlin Introduction

What is Android?

● Open source mobile OS based on Linux kernel
● UI for touch screens
● Used on ~88% of smartphones
● Runs on Phones, TVs, Wearables, and Cars
● ~ 3 Million Android apps in Google Play store

Mobile App Development
● Native
● Cross Platform (Hybrid)
● Web (PWA)

iOS
Xcode
Swift/Objective-C

Native Apps
Android
Android Studio
Kotlin/Java & XML

Xamarin Forms
C# & XAML
By Microsoft

Cross Platform Apps
Flutter
Dart
By Google

React Native
JavaScript
By Facebook

Progressive Web Apps (PWA)
Any application that can works in a web browser for desktop & mobile devices
● Client-side JavaScript Frameworks

○ Javascript, HTML, CSS
○ Web Frameworks

■ React, Angular, Vue

Mobile Dev Apps Comparison

Native Cross-platform PWA

Shared Code Base 0% About 80%-95% 100%

Access to OS API Full Most of them Limited

Performance Best In-between (depending
on the framework used)

Worst

Why Android?

Android Development
● Development Supported on many Operating Systems

Open Source
Larger developer and community reach

Increased Marketing

Inter-app integration

Reduced cost of development
Higher Success

Rich development environment

Google Play
● The App Store for Android Apps
● Hosts large variety of Apps
● Google Play Console

○ Develop and Publish App
○ Access to Billions of Users
○ Adjust and Iterate App Showcasing
○ Maintain App after Deployment
○ View User Reviews

Android Software Developer Kit (SDK)
● Development tools (debugger, monitors, editors, Android Studio)
● Libraries (maps, wearables)
● Virtual devices (emulators)
● Documentation (developers.android.com)
● Sample code

Android is like an Onion, it has a lot of layers

Android
Platform

Architecture

System Apps

Java API Framework

Native C/C++ Libraries Android Runtime

Hardware Abstraction Layer (HAL)

Linux Kernel

Android Architecture
● Hardware Abstraction Layer (HAL) -

Standard interfaces that expose hardware
capabilities as libraries

● Linux Kernel - Android relies on this for
drivers, threading, security, and memory
management

Android Platform Architecture
● System Apps - Android comes with these

default core applications
● Java API Framework - you have access to

the same APIs used by the core
applications

● Native C/C++ Libraries - Underneath API
Framework

● Android Runtime - Each app runs in its
own process with its own instance of the
Android Runtime

Android Architecture
Summary

● System Apps
● Java API Framework
● Native C/C++ Libraries
● Android Runtime
● Hardware Abstraction Layer (HAL)
● Linux Kernel

Core Fundamentals

Android Versions
● Each version adds new features

and changes
● Depending on the manufacturer,

the Android OS used can be
modified

Name Version Released Supported API level

Jelly Bean 4.1 – 4.3.1 July 2012 No 16 – 18

KitKat 4.4 – 4.4.4 Oct 2013 No 19 – 20

Lollipop 5.0 – 5.1.1 Nov 2014 No 21 – 22

Marshmallow 6.0 – 6.0.1 Oct 2015 No 23

Nougat 7.0 – 7.1.2 Aug 2016 No 24 – 25

Oreo 8.0 – 8.1 Aug 2017 Yes 26 – 27

Pie 9 Aug 2018 Yes 28

Android 10 10 Sept 2019 Yes 29

Android 11 11 Sept 2020 Yes 30

https://en.wikipedia.org/wiki/Android_Jelly_Bean
https://en.wikipedia.org/wiki/Android_KitKat
https://en.wikipedia.org/wiki/Android_Lollipop
https://en.wikipedia.org/wiki/Android_Marshmallow
https://en.wikipedia.org/wiki/Android_Nougat
https://en.wikipedia.org/wiki/Android_Oreo
https://en.wikipedia.org/wiki/Android_Pie
https://en.wikipedia.org/wiki/Android_10
https://en.wikipedia.org/wiki/Android_11

API levels

● Target API level
○ Version that the developer wants

to design the application for
● Minimum API level

○ Oldest version the application will
be backwards compatible with

Android App Fundamental Background
● Single or Multiple interactive screens
● Written with:

○ Kotlin/Java and XML
● Uses:

○ Android Software Development Kit (SDK)
○ Android libraries and Android Application Framework

● Executes:
○ Android Runtime Virtual machine (ART)

Some Core Challenges
● UI/UX:

○ Multiple screen sizes and resolutions
○ Accessibility

● Performance:
○ make your apps responsive and smooth

● Security:
○ keep source code and user data safe

● Compatibility:
○ run well on older platform versions

● Marketing:
○ understand the market and your users
○ (Hint: It doesn't have to be expensive, but it can be.)

Exploring Android File
Structure

View Modes

File Structure
Android View

Location

Project Files View

File Structure
Manifest: declares essential
information about app for the
runtime
● Every app must include it
● Declared Information about the

application
○ App name
○ Components
○ Permissions
○ Required libraries

Location

File Structure
Manifest: declares essential
information about app for the
runtime
● Every app must include it
● Declared Information about the

application
○ App name
○ Components
○ Permissions
○ Required libraries

Code

File Structure
Source Code (JVM): activities,
services, and helper classes
● Kotlin source code under “Java”

folder
● Contains MainActivity

Location

File Structure
Source Code (JVM): activities,
services, and helper classes
● Kotlin source code under “Java”

folder
● Contains MainActivity

Code

File Structure
Resources: Layouts, images, strings,
colors as XML and media files in key
value pairs
● Contains app resources

○ Layouts
○ Values
○ Strings
○ Images
○ Audio
○ Color
○ & More!

Location

File Structure
Resources: Layouts, images, strings,
colors as XML and media files in key
value pairs
● Contains app resources

○ Layouts
○ Values
○ Strings
○ Images
○ Audio
○ Color
○ & More!

Code

Gradle: Determines the proper order
of tasks to run
● Manages the build cycle via a

series of tasks
○ Compiles Kotlin sources, runs tests,

installs app to device
● Builds automation system
● Manages dependencies between

projects and third-party libraries
● Common tasks include:

○ Clean
○ Tasks
○ InstallDebug

File Structure

Location

Gradle Scripts (top-level)
● build.gradle (Project:

apptitle)
● top-level build file for the

entire project
● defines build configurations

that apply to all modules in
your project

Gradle Scripts
(module-level)
● build.gradle (Module: app)
● separate build files for

each module
● edit the build settings to

provide custom packaging
options for each module

● Build types, product
flavors, …

● Overrides top-level
build.gradle

Specify android-specific
gradle plugins

android { } block defines
target sdk for compiling

defaultConfig{ } block
defines core settings

buildTypes { } block controls
app building and packaging

dependencies{ } block
define what your app
depends on

Code

Android Development
Basics

Create a Project

Android Studio
1. Toolbar
2. Navigation bar
3. Editor window
4. Tool window bar
5. Tool windows
6. Status bar

Android Studio - Layouts
1. Project Window
2. Palette
3. Components Tree
4. Design Editor
5. Attributes

Activities - Introduction

● Activities range from showing displays of:
○ Lists from a feed (ie: Reddit)
○ Details about individual items (ie: Amazon Shopping)
○ Using other apps to achieve functionality (ie:

Snapchat Filters)
● MainActivity.kt

○ Where core app behavior gets defined
○ Can change views dynamically
○ Work with functions like onCreate() to create views

and bind data

● An Activity tells Android how the app should interact with the user
● Every Android app contains at least one activity

Activities - MainActivity.kt
● MainActivity.kt

○ Where core app behavior gets defined
○ Can change views dynamically
○ Work with functions like onCreate() to create views

and bind data

Activities - A Closer Look

Activity launched

App is running

Activity shut down

Android Studio - Emulator
● Android Virtual Device (AVD) manager

○ Creates virtual device/emulator simulating an
Android-powered device

● Use AVD Manager to
○ Define hardware characteristics of a device and its API level,

and to save it as a virtual device configuration.
○ Upon starting, the emulator reads a specified configuration

and emulates a device that behaves like a physical
phone/device

Create and Run a Virtual Device

Tools > Android > AVD Manager, or
click the AVD Manager icon

Run > Run app OR Click the
Android Studio Run icon Run

Tools > Android > AVD Manager, or click the AVD
Manager icon

Debugging
● The log is a debugging tool to look at values, execution paths, and exceptions
● To see the Logcat pane, click the Logcat tab at the bottom of the Android

Studio window
● Set to default Verbose (shows all Log messages.) Other settings include

Debug, Error, Info, and Warn.

Logging Example
● Log tags are defined as constants for the Activity:

○ private static final String LOG_TAG = MainActivity.class.getSimpleName();
● Types of logs

○ d: Debug, e: Error, w: Warn, i: Info
● Sample log statement

○ Log.d(LOG_TAG, "Hello World");
● Expected Output:

○ 11-24 14:06:59.001 4696-4696/? D/MainActivity: Hello World

